- 1. Evaluate $\iint_R y \sin x \, dy \, dx$ where R is the region in the first quadrant of the xy-plane below the curve $y = \cos x$ between x = 0 and $x = \pi$. (16 points)
- 2. Find the volume of the solid in 3-space which is below the surface z = xy and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$ and $y = x^2$. (17 points)
- 3. Find the moment of inertia about the z-axis of a sphere of radius 1 centered at the origin if the mass density at any point in the ball is given by $\rho(x, y, z) = \sqrt{x^2 + y^2}$. (17 points)
- 4. A square in the xy-plane with vertices (2, 2), (4, 0), (6, 2), and (4, 4) is revolved about the y-axis. Find the volume of the resulting solid of revolution. (16 points)
- 5. Find the volume of the solid in 3 space under the surface $z = 16 x^2 y^2$ and above the *xy*-plane. (16 points)
- 6. Compute the arclength of the curve given by $r(t) = (3\cos(2t), 3\sin(2t), 4t)$ for $0 \le t \le 2\pi$. (16 points)